3.160 \(\int \frac{\cos ^3(a+b x) \sin ^3(a+b x)}{(c+d x)^2} \, dx\)

Optimal. Leaf size=179 \[ \frac{3 b \cos \left (2 a-\frac{2 b c}{d}\right ) \text{CosIntegral}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}-\frac{3 b \cos \left (6 a-\frac{6 b c}{d}\right ) \text{CosIntegral}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}-\frac{3 b \sin \left (2 a-\frac{2 b c}{d}\right ) \text{Si}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}+\frac{3 b \sin \left (6 a-\frac{6 b c}{d}\right ) \text{Si}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}-\frac{3 \sin (2 a+2 b x)}{32 d (c+d x)}+\frac{\sin (6 a+6 b x)}{32 d (c+d x)} \]

[Out]

(3*b*Cos[2*a - (2*b*c)/d]*CosIntegral[(2*b*c)/d + 2*b*x])/(16*d^2) - (3*b*Cos[6*a - (6*b*c)/d]*CosIntegral[(6*
b*c)/d + 6*b*x])/(16*d^2) - (3*Sin[2*a + 2*b*x])/(32*d*(c + d*x)) + Sin[6*a + 6*b*x]/(32*d*(c + d*x)) - (3*b*S
in[2*a - (2*b*c)/d]*SinIntegral[(2*b*c)/d + 2*b*x])/(16*d^2) + (3*b*Sin[6*a - (6*b*c)/d]*SinIntegral[(6*b*c)/d
 + 6*b*x])/(16*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.297098, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {4406, 3297, 3303, 3299, 3302} \[ \frac{3 b \cos \left (2 a-\frac{2 b c}{d}\right ) \text{CosIntegral}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}-\frac{3 b \cos \left (6 a-\frac{6 b c}{d}\right ) \text{CosIntegral}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}-\frac{3 b \sin \left (2 a-\frac{2 b c}{d}\right ) \text{Si}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}+\frac{3 b \sin \left (6 a-\frac{6 b c}{d}\right ) \text{Si}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}-\frac{3 \sin (2 a+2 b x)}{32 d (c+d x)}+\frac{\sin (6 a+6 b x)}{32 d (c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[a + b*x]^3*Sin[a + b*x]^3)/(c + d*x)^2,x]

[Out]

(3*b*Cos[2*a - (2*b*c)/d]*CosIntegral[(2*b*c)/d + 2*b*x])/(16*d^2) - (3*b*Cos[6*a - (6*b*c)/d]*CosIntegral[(6*
b*c)/d + 6*b*x])/(16*d^2) - (3*Sin[2*a + 2*b*x])/(32*d*(c + d*x)) + Sin[6*a + 6*b*x]/(32*d*(c + d*x)) - (3*b*S
in[2*a - (2*b*c)/d]*SinIntegral[(2*b*c)/d + 2*b*x])/(16*d^2) + (3*b*Sin[6*a - (6*b*c)/d]*SinIntegral[(6*b*c)/d
 + 6*b*x])/(16*d^2)

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^3(a+b x) \sin ^3(a+b x)}{(c+d x)^2} \, dx &=\int \left (\frac{3 \sin (2 a+2 b x)}{32 (c+d x)^2}-\frac{\sin (6 a+6 b x)}{32 (c+d x)^2}\right ) \, dx\\ &=-\left (\frac{1}{32} \int \frac{\sin (6 a+6 b x)}{(c+d x)^2} \, dx\right )+\frac{3}{32} \int \frac{\sin (2 a+2 b x)}{(c+d x)^2} \, dx\\ &=-\frac{3 \sin (2 a+2 b x)}{32 d (c+d x)}+\frac{\sin (6 a+6 b x)}{32 d (c+d x)}+\frac{(3 b) \int \frac{\cos (2 a+2 b x)}{c+d x} \, dx}{16 d}-\frac{(3 b) \int \frac{\cos (6 a+6 b x)}{c+d x} \, dx}{16 d}\\ &=-\frac{3 \sin (2 a+2 b x)}{32 d (c+d x)}+\frac{\sin (6 a+6 b x)}{32 d (c+d x)}-\frac{\left (3 b \cos \left (6 a-\frac{6 b c}{d}\right )\right ) \int \frac{\cos \left (\frac{6 b c}{d}+6 b x\right )}{c+d x} \, dx}{16 d}+\frac{\left (3 b \cos \left (2 a-\frac{2 b c}{d}\right )\right ) \int \frac{\cos \left (\frac{2 b c}{d}+2 b x\right )}{c+d x} \, dx}{16 d}+\frac{\left (3 b \sin \left (6 a-\frac{6 b c}{d}\right )\right ) \int \frac{\sin \left (\frac{6 b c}{d}+6 b x\right )}{c+d x} \, dx}{16 d}-\frac{\left (3 b \sin \left (2 a-\frac{2 b c}{d}\right )\right ) \int \frac{\sin \left (\frac{2 b c}{d}+2 b x\right )}{c+d x} \, dx}{16 d}\\ &=\frac{3 b \cos \left (2 a-\frac{2 b c}{d}\right ) \text{Ci}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}-\frac{3 b \cos \left (6 a-\frac{6 b c}{d}\right ) \text{Ci}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}-\frac{3 \sin (2 a+2 b x)}{32 d (c+d x)}+\frac{\sin (6 a+6 b x)}{32 d (c+d x)}-\frac{3 b \sin \left (2 a-\frac{2 b c}{d}\right ) \text{Si}\left (\frac{2 b c}{d}+2 b x\right )}{16 d^2}+\frac{3 b \sin \left (6 a-\frac{6 b c}{d}\right ) \text{Si}\left (\frac{6 b c}{d}+6 b x\right )}{16 d^2}\\ \end{align*}

Mathematica [A]  time = 0.9808, size = 189, normalized size = 1.06 \[ \frac{6 b (c+d x) \cos \left (2 a-\frac{2 b c}{d}\right ) \text{CosIntegral}\left (\frac{2 b (c+d x)}{d}\right )-6 b (c+d x) \cos \left (6 a-\frac{6 b c}{d}\right ) \text{CosIntegral}\left (\frac{6 b (c+d x)}{d}\right )-6 b (c+d x) \sin \left (2 a-\frac{2 b c}{d}\right ) \text{Si}\left (\frac{2 b (c+d x)}{d}\right )+6 b (c+d x) \sin \left (6 a-\frac{6 b c}{d}\right ) \text{Si}\left (\frac{6 b (c+d x)}{d}\right )-3 d \sin (2 a) \cos (2 b x)+d \sin (6 a) \cos (6 b x)-3 d \cos (2 a) \sin (2 b x)+d \cos (6 a) \sin (6 b x)}{32 d^2 (c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[a + b*x]^3*Sin[a + b*x]^3)/(c + d*x)^2,x]

[Out]

(6*b*(c + d*x)*Cos[2*a - (2*b*c)/d]*CosIntegral[(2*b*(c + d*x))/d] - 6*b*(c + d*x)*Cos[6*a - (6*b*c)/d]*CosInt
egral[(6*b*(c + d*x))/d] - 3*d*Cos[2*b*x]*Sin[2*a] + d*Cos[6*b*x]*Sin[6*a] - 3*d*Cos[2*a]*Sin[2*b*x] + d*Cos[6
*a]*Sin[6*b*x] - 6*b*(c + d*x)*Sin[2*a - (2*b*c)/d]*SinIntegral[(2*b*(c + d*x))/d] + 6*b*(c + d*x)*Sin[6*a - (
6*b*c)/d]*SinIntegral[(6*b*(c + d*x))/d])/(32*d^2*(c + d*x))

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 256, normalized size = 1.4 \begin{align*}{\frac{1}{b} \left ( -{\frac{{b}^{2}}{192} \left ( -6\,{\frac{\sin \left ( 6\,bx+6\,a \right ) }{ \left ( \left ( bx+a \right ) d-ad+bc \right ) d}}+6\,{\frac{1}{d} \left ( 6\,{\frac{1}{d}{\it Si} \left ( 6\,bx+6\,a+6\,{\frac{-ad+bc}{d}} \right ) \sin \left ( 6\,{\frac{-ad+bc}{d}} \right ) }+6\,{\frac{1}{d}{\it Ci} \left ( 6\,bx+6\,a+6\,{\frac{-ad+bc}{d}} \right ) \cos \left ( 6\,{\frac{-ad+bc}{d}} \right ) } \right ) } \right ) }+{\frac{3\,{b}^{2}}{64} \left ( -2\,{\frac{\sin \left ( 2\,bx+2\,a \right ) }{ \left ( \left ( bx+a \right ) d-ad+bc \right ) d}}+2\,{\frac{1}{d} \left ( 2\,{\frac{1}{d}{\it Si} \left ( 2\,bx+2\,a+2\,{\frac{-ad+bc}{d}} \right ) \sin \left ( 2\,{\frac{-ad+bc}{d}} \right ) }+2\,{\frac{1}{d}{\it Ci} \left ( 2\,bx+2\,a+2\,{\frac{-ad+bc}{d}} \right ) \cos \left ( 2\,{\frac{-ad+bc}{d}} \right ) } \right ) } \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)^3*sin(b*x+a)^3/(d*x+c)^2,x)

[Out]

1/b*(-1/192*b^2*(-6*sin(6*b*x+6*a)/((b*x+a)*d-a*d+b*c)/d+6*(6*Si(6*b*x+6*a+6*(-a*d+b*c)/d)*sin(6*(-a*d+b*c)/d)
/d+6*Ci(6*b*x+6*a+6*(-a*d+b*c)/d)*cos(6*(-a*d+b*c)/d)/d)/d)+3/64*b^2*(-2*sin(2*b*x+2*a)/((b*x+a)*d-a*d+b*c)/d+
2*(2*Si(2*b*x+2*a+2*(-a*d+b*c)/d)*sin(2*(-a*d+b*c)/d)/d+2*Ci(2*b*x+2*a+2*(-a*d+b*c)/d)*cos(2*(-a*d+b*c)/d)/d)/
d))

________________________________________________________________________________________

Maxima [C]  time = 1.76057, size = 406, normalized size = 2.27 \begin{align*} \frac{b^{2}{\left (-3 i \, E_{2}\left (\frac{2 i \, b c + 2 i \,{\left (b x + a\right )} d - 2 i \, a d}{d}\right ) + 3 i \, E_{2}\left (-\frac{2 i \, b c + 2 i \,{\left (b x + a\right )} d - 2 i \, a d}{d}\right )\right )} \cos \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) + b^{2}{\left (i \, E_{2}\left (\frac{6 i \, b c + 6 i \,{\left (b x + a\right )} d - 6 i \, a d}{d}\right ) - i \, E_{2}\left (-\frac{6 i \, b c + 6 i \,{\left (b x + a\right )} d - 6 i \, a d}{d}\right )\right )} \cos \left (-\frac{6 \,{\left (b c - a d\right )}}{d}\right ) - 3 \, b^{2}{\left (E_{2}\left (\frac{2 i \, b c + 2 i \,{\left (b x + a\right )} d - 2 i \, a d}{d}\right ) + E_{2}\left (-\frac{2 i \, b c + 2 i \,{\left (b x + a\right )} d - 2 i \, a d}{d}\right )\right )} \sin \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) + b^{2}{\left (E_{2}\left (\frac{6 i \, b c + 6 i \,{\left (b x + a\right )} d - 6 i \, a d}{d}\right ) + E_{2}\left (-\frac{6 i \, b c + 6 i \,{\left (b x + a\right )} d - 6 i \, a d}{d}\right )\right )} \sin \left (-\frac{6 \,{\left (b c - a d\right )}}{d}\right )}{64 \,{\left (b c d +{\left (b x + a\right )} d^{2} - a d^{2}\right )} b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(b*x+a)^3/(d*x+c)^2,x, algorithm="maxima")

[Out]

1/64*(b^2*(-3*I*exp_integral_e(2, (2*I*b*c + 2*I*(b*x + a)*d - 2*I*a*d)/d) + 3*I*exp_integral_e(2, -(2*I*b*c +
 2*I*(b*x + a)*d - 2*I*a*d)/d))*cos(-2*(b*c - a*d)/d) + b^2*(I*exp_integral_e(2, (6*I*b*c + 6*I*(b*x + a)*d -
6*I*a*d)/d) - I*exp_integral_e(2, -(6*I*b*c + 6*I*(b*x + a)*d - 6*I*a*d)/d))*cos(-6*(b*c - a*d)/d) - 3*b^2*(ex
p_integral_e(2, (2*I*b*c + 2*I*(b*x + a)*d - 2*I*a*d)/d) + exp_integral_e(2, -(2*I*b*c + 2*I*(b*x + a)*d - 2*I
*a*d)/d))*sin(-2*(b*c - a*d)/d) + b^2*(exp_integral_e(2, (6*I*b*c + 6*I*(b*x + a)*d - 6*I*a*d)/d) + exp_integr
al_e(2, -(6*I*b*c + 6*I*(b*x + a)*d - 6*I*a*d)/d))*sin(-6*(b*c - a*d)/d))/((b*c*d + (b*x + a)*d^2 - a*d^2)*b)

________________________________________________________________________________________

Fricas [A]  time = 0.596735, size = 632, normalized size = 3.53 \begin{align*} \frac{6 \,{\left (b d x + b c\right )} \sin \left (-\frac{6 \,{\left (b c - a d\right )}}{d}\right ) \operatorname{Si}\left (\frac{6 \,{\left (b d x + b c\right )}}{d}\right ) - 6 \,{\left (b d x + b c\right )} \sin \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) \operatorname{Si}\left (\frac{2 \,{\left (b d x + b c\right )}}{d}\right ) + 3 \,{\left ({\left (b d x + b c\right )} \operatorname{Ci}\left (\frac{2 \,{\left (b d x + b c\right )}}{d}\right ) +{\left (b d x + b c\right )} \operatorname{Ci}\left (-\frac{2 \,{\left (b d x + b c\right )}}{d}\right )\right )} \cos \left (-\frac{2 \,{\left (b c - a d\right )}}{d}\right ) - 3 \,{\left ({\left (b d x + b c\right )} \operatorname{Ci}\left (\frac{6 \,{\left (b d x + b c\right )}}{d}\right ) +{\left (b d x + b c\right )} \operatorname{Ci}\left (-\frac{6 \,{\left (b d x + b c\right )}}{d}\right )\right )} \cos \left (-\frac{6 \,{\left (b c - a d\right )}}{d}\right ) + 32 \,{\left (d \cos \left (b x + a\right )^{5} - d \cos \left (b x + a\right )^{3}\right )} \sin \left (b x + a\right )}{32 \,{\left (d^{3} x + c d^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(b*x+a)^3/(d*x+c)^2,x, algorithm="fricas")

[Out]

1/32*(6*(b*d*x + b*c)*sin(-6*(b*c - a*d)/d)*sin_integral(6*(b*d*x + b*c)/d) - 6*(b*d*x + b*c)*sin(-2*(b*c - a*
d)/d)*sin_integral(2*(b*d*x + b*c)/d) + 3*((b*d*x + b*c)*cos_integral(2*(b*d*x + b*c)/d) + (b*d*x + b*c)*cos_i
ntegral(-2*(b*d*x + b*c)/d))*cos(-2*(b*c - a*d)/d) - 3*((b*d*x + b*c)*cos_integral(6*(b*d*x + b*c)/d) + (b*d*x
 + b*c)*cos_integral(-6*(b*d*x + b*c)/d))*cos(-6*(b*c - a*d)/d) + 32*(d*cos(b*x + a)^5 - d*cos(b*x + a)^3)*sin
(b*x + a))/(d^3*x + c*d^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)**3*sin(b*x+a)**3/(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (b x + a\right )^{3} \sin \left (b x + a\right )^{3}}{{\left (d x + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)^3*sin(b*x+a)^3/(d*x+c)^2,x, algorithm="giac")

[Out]

integrate(cos(b*x + a)^3*sin(b*x + a)^3/(d*x + c)^2, x)